Betriebstechnik | Biographien | Biologie | Chemie | Deutsch | Digitaltechnik |
Electronica | Epochen | Fertigungstechnik | Gemeinschaftskunde | Geographie | Geschichte |
Informatik | Kultur | Kunst | Literatur | Management | Mathematik |
Medizin | Nachrichtentechnik | Philosophie | Physik | Politik | Projekt |
Psychologie | Recht | Sonstige | Sport | Technik | Wirtschaftskunde |
Ähnliche Berichte:
|
Projekte:
|
Papers in anderen sprachen:
|
informatik referate |
Bewertung des Lernprogramms "PHYSIKUS"
Die Bewertung des Lernprogramms lässt sich in drei Teile zergliedern. Zuerst sollen die einzelnen Komponenten, die in PHYSIKUS verwendet wurden, analysiert werden und in einem zweiten Schritt sollen diese Komponenten in einer Struktur miteinander verknüpft und bewertet werden. In einem dritten Schritt geht es darum zu bewerten, was dieses Lernprogramm leisten kann, bzw. welche Defizite es im Hinblick auf Lernziele und lerntheoretische Betrachtungen aufweist.
Beschreibung des Lernprogramms
PHYSIKUS gehört in den Bereich der Lernspiele. Es ist in einen Lernteil und einen Spielteil eingeteilt. Beide Teile lassen sich über die Anfangsseite des Spiels direkt anwählen. Trotz der sehr klaren Trennung in zwei unterschiedliche CDs ist der Spielteil sehr eng mit dem Lernteil verwoben. Der Lernteil jedoch ist unabhängig vom Spielteil zu benutzen. In 5 Themengebieten der Physik kann der Benutzer das Wissen sammeln, das nötig ist, um bestimmte Maschinen innerhalb des Spiels in Gang zu setzten. Im Folgenden wird zunächst die Geschichte von PHYSIKUS kurz referiert, um dann die einzelnen Teile des Lernprogramms darzustellen und diese auf die zuvor beschriebenen Strukturkomponenten hin zu untersuchen.
Die Spielidee
Durch einen Meteoriteneinschlag auf einem kleinen Planeten hört dieser auf zu rotieren. Von jenem Zeitpunkt an gibt es eine der Sonne zugewandte Seite, die von der glühenden Hitze ausgedörrt wird und eine der Sonne abgewandte Seite, auf der extrem tiefe Temperaturen ein Leben unmöglich machen. Ein Professor möchte diese gefährliche Situation beheben, indem er eine riesige Impulsmaschine baut, mit deren Hilfe der Planet wieder in Rotation versetzt werden kann. Kurz vor der Fertigstellung seiner Maschine muss der Professor jedoch aufgrund extrem lebensunfreundlicher Bedingungen fliehen. Nun wird der Lernende aufgefordert fünf Generatoren soweit in Stand zu setzten, dass sie die Impulsmaschine mit Strom versorgen können. Die Mechanismen der Maschinen innerhalb eines Generators unterliegen jedoch physikalischen Gesetzmäßigkeiten. Mit Hilfe des physikalischen Grundwissens, welches der Professor auf seinem Laptop gespeichert hat, sollen die Maschinen durch den Lernenden funktionstüchtig gemacht werden.
Beschreibung des Interface des Spielteils
Aus der Ich-Perspektive des Benutzers erhält man einen Einblick in die Spielwelt. (siehe Abb.6) Diese erschließt sich dem Benutzer deshalb auch nur nach und nach, eine Gesamtansicht der Aktionsfläche bleibt dem Lernenden verwehrt. Durch eine Veränderung des Mauszeigers wird dem Spielenden deutlich gemacht, dass bestimmte Gegenstände innerhalb eines Bildes zu benutzen oder für den Spielverlauf von Relevanz sind. Im unteren Bildschirmviertel befindet sich die Navigationsleiste. Zum einen ist es möglich, durch einen ON-Schalter das Lernlaptop zu aktivieren, um somit auch in den Lernteil wechseln zu können, zum anderen steht dem Benutzer eine Interaktionskomponente in Form eines Scanners zur Verfügung. Der Scanner hat die Funktion, Gegenstände zu "nehmen" und sie in einem anderen Zusammenhang zu aktivieren. In der oberen rechten Ecke des Bildschirms befindet sich eine Hilfeleiste, durch die der Lernende auf entsprechende Verweise im Lernteil aufmerksam gemacht wird.
Beschreibung des Interface des Lernteils
Das Laptop des Professors, wie die Programmierer von PHYSIKUS den Lernteil genannt haben, bietet dem Lernenden auf der Anfangsseite fünf Wissensgebiete an, die nach einer Auswahl einen sofortigen Einstieg in das Lernprogramm bieten. Die Mitte des Bildschirms wird dominiert von einer Animation, die gekoppelt ist mit einem links darüber stehenden Text. (siehe Abb.7) Dem Benutzer steht es frei, den Sprecher über die Navigationsleiste zu aktivieren oder nicht, um so den Fokus auf die Animation zu richten. In vielen Fällen wird nach der Instruktion die Animation zur Interaktion freigegeben. Hierdurch wandelt sich die Animation zu einer Simulation um, bei der der Benutzer durch das Einsetzen verschiedener Variablen die Anderung des Endzustandes miteinander vergleichen kann. Der Benutzer wird über die "Tu-was-Zeile" am linken unteren Bildschirmrand darauf hingewiesen, dass er mit dem Mauszeiger in die Simulation eingreifen kann. Über die Pfeiltasten in der Navigationskomponente am unteren rechten Rand des Bildschirms ist es möglich, innerhalb einer Lektion vor- oder zurückzugehen oder mit Hilfe der Doppelpfeile ein Kapitel zu überspringen bzw. zu wiederholen. Mit Hilfe des Kassettenitems kommt man zu einer kompletten Kapitelübersicht mit allen im Lernprogramm möglichen Lektionen. Durch den OFF-Schalter kann der Benutzer das Laptop schließen und zum Spielteil zurückkehren.
Verknüpfung der Strukturelemente und ihre Bewertung unter Berücksichtigung der KI-Anforderungen und lern- und designtheoretischer Gesichtspunkte
Im Folgenden soll unter Rückbezug auf die oben beschriebenen Komponenten aufgezeigt werden, ob das Programm PHYSIKUS in der Lage ist, einer pädagogischen Bewertung standzuhalten.
Bewertung unter Berücksichtigung der KI-Anforderungen
PHYSIKUS ist nicht mit KI-Anteilen ausgestattet worden. Das bedeutet auf der anderen Seite natürlich auch, dass das Programm nicht in der Lage ist, sich dem Lernenden anzupassen, wodurch ein wichtiges Element im Lernprozess fehlt. Der Lernende bleibt dem ständigen Gefühl überlassen, innerhalb des Programms auf sich allein gestellt zu sein. Das hat an vielen Stellen des Spiels zur Folge, dass die Motivation, weiterzuspielen strapaziert wird.
Bewertung unter Berücksichtigung der lerntheoretischen Anforderungen
Der Lernteil ist so angelegt, dass die Animationen die Instruktionen visuell unterstützen und der Lerner somit in die Lage versetzt wird, durch zwei verschiedene Sinneskanäle (auditiv und visuell) Zugang zum Lernstoff zu erlangen. (siehe Abb.7) EDELMANN weist darauf hin, dass PAVIO diese duale Form der Informationsaufnahme und -speicherung hervorgehoben hat. "Im Zusammenhang mit dualer Kodierung kann man aber auch die sinnvolle Hypothese aufstellen, dass bestimmte Wissensstoffe leichter erfasst und besser behalten werden, wenn sie sowohl bildhaft, als auch sprachlich-inhaltlich verarbeitet werden." (Edelmann, 1996: S.220-221)
Der Lernteil folgt nur bedingt den von GAGNE aufgestellten Postulaten des Wissenserwerbs. So werden neu eingeführte Begriffe definiert, um sicherzustellen, dass sie zu jedem Zeitpunkt die gleiche Bedeutung haben. Anschließend werden die neu eingeführten Begriffe an Beispiele gekoppelt. In einem dritten Schritt wird der erlernte Sachverhalt im Spielteil in einem anderen Zusammenhang angewendet, um sicher zu stellen, dass eine Regel erlernt wurde und nicht nur ein Begriff. Bis hierhin entspricht der Wissenserwerb dem von GAGNE erforschten Verlauf. Es gibt jedoch zwei Optionen, die gegen eine klare Durchhaltung des Erwerbs von Regelhierarchien nach GAGNE verstoßen:
Die direkte Verbindung zwischen dem Lern- und dem Spielteil (siehe Abb.8) legt nahe, die erlernten Regeln nur mechanisch aufzunehmen, und unmittelbar im Spielteil anzuwenden. So ist es trotz des Transfers eines erlernten Sachverhaltes in eine Anwendungsumgebung nicht möglich, das Wissen für längere Zeit zu speichern. Deshalb ist, nach GAGNE, der Lernende auch nicht in der Lage den Lernstoff zu verstehen, sondern er lernt ihn für eine kurze Zeit auswendig, wodurch nur ein kurzfristiger Lernerfolg gewährleistet ist.
Die Suche nach dem Lösungsprinzip von trial und error nach der Lösung kann nicht in GAGNES Sinne gewesen sein. Möchte der Benutzer also eine Maschine in Gang setzen, so wird es wahrscheinlich mehrere vernünftige Lösungen geben, von denen jedoch nur eine die richtige, die programmierte ist. Theoretisch müsste es möglich sein, jede vernünftige Lösung im Spielteil anzuerkennen, dem ist jedoch nicht so. Es gibt nur eine mögliche Lösung, obwohl die anderen sicherlich auch richtig wären. Durch eine derartige Verwirrung werden schon einmal verknüpfte Begriffe mit dem Regelnetzwerk wieder gelöscht, da sie nicht zum erwarteten Erfolg führen. Letztendlich ist dem Benutzer nicht klar, ob die verwendete Lösung richtig war oder nicht.
Das Wiedererkennen von erlernten Sachverhalten setzt ein Abstraktionsvermögen voraus, das PIAGET als "hypothetisch-deduktiv" bezeichnet. Diese dem Jugendlichen eigentümliche Fähigkeit manifestiert sich, wenn" a) einfache Annahmen, die mit der Wirklichkeit oder mit dem, was das Subjekt wirklich glaubt, in keiner notwendigen Beziehung stehen und b) wenn es der Notwendigkeit des Schlusses als solchem, im Gegensatz zur Übereinstimmung seiner Folgerungen mit der Erfahrung, vertraut." (Piaget, 1974: S.167) Je nach Entwicklung des Kindes sind solche formalen Operationen jedoch erst ab ca.11-12 Jahren möglich. Deshalb müsste das Mindestalter für dieses Lernprogramm auf 12 Jahre datiert werden, während es nach Angaben der PHYSIKUS-Mitarbeiter keine Altersbeschränkung gibt.
Neben diesen kognitivistisch orientierten Lernprozessen, ist jedoch auch darauf hinzuweisen, dass die Instruktionen des Lernteils den behavioristischen Lernstrategien folgen. Es ist eine Ahnlichkeit zu den Instruktionsprogrammen der 50-er und 60-er Jahre zu erkennen, mit dem Unterschied, dass nach der Instruktion keine Prüfung des Erlernten Wissens ansteht, sondern die Nutzung einer Simulation vorgeschlagen wird, um das Erlernte nachzuvollziehen. Hierdurch ergibt sich für den Lerner keine Möglichkeit nachzuprüfen, ob er das Erlernte verstanden hat oder nicht.
Festzustellen ist auch eine stringente Autorensteuerung im Spielteil (vgl. Abb.6), die es dem Lernenden nicht erlaubt, zu jeder programmierten Spielsituation zu "surfen". Nur durch die erfolgreiche Inbetriebsetzung einer Maschine ist der Benutzer in der Lage, im Spielverlauf voranzuschreiten. Gerade in diesem Fall kommt der Autorensteuerung eine ambivalente Bedeutung zu. Auf der einen Seite ist es dem Lerner nicht möglich selbstgesteuert und eigenverantwortlich zu lernen, auf der anderen Seite ist es vor allen Dingen die Linearität, die es dem Benutzer gestattet, aufeinander aufbauende Sachverhalte zu erlernen. Hinzu kommt, dass die Lernmotivation gerade dadurch entfacht wird, dass der Lerner nicht zusammenhangslos Wissen auswendig lernt (mechanisch nach AUS-UBEL), sondern den Lernprozess sinnvoll-rezeptiv gestalten muss, wenn er in der Lage sein will, erlernte Gesetzmäßigkeiten auf andere Zusammenhänge zu übertragen. Nach AUSUBEL ist diese Form des Wissenserwerbs die beste, da der Schüler verstehend lernt. (vgl. Kap. 2.2.1.2.) Aufgrund der Linearität des Wissenserwerbs ist das Programm auch für das Selbststudium geeignet. Während am Anfang des Spiels triviale Aufgaben vom Lerner zu lösen sind, werden diese zum Ende zunehmend komplexer.
Bewertung unter Berücksichtigung der designtheoretischen Anforderungen
Das Interface-design folgt den gestaltpsychologischen Postulaten. So dient die Einfassung des Aktionsfensters (im Spielteil) durch das Lernlaptop einer klaren Strukturierung (siehe Abb.7) und folgt den Gesetzen der Symmetrie. Durch die räumliche Nähe der einzelnen Komponenten (im Lernteil) wird es dem Benutzer leicht fallen Beziehungen herzustellen und andere entferntere Komponenten einer anderen Einheit zuzuordnen (siehe Kap.3.1.3.6.). In diesem Zusammenhang ist jedoch die Installation der Hilfezeile für die Navigationskomponente ungünstig gewählt worden, da sie gerade gegen das Gesetz von Gruppen und Grenzen verstößt. An dieser Stelle wird aufgrund der räumlichen Distanz die Beziehung zwischen diesen beiden Einheiten erst relativ spät deutlich.
Zusammenfassende Bewertung des Lernspiels "PHYSIKUS"
Die Bewertung von Lernprogrammen kann immer nur unter der Berücksichtigung der konkreten Lernsituation erfolgen da sie meistens vorher durch die Autoren des Programms definiert wurden. Hierzu gehören zum einen die Beweggründe des Lerners, ein Lernprogramm zu benutzen und gehört zum anderen der Zusammenhang, in dem das Lernprogramm genutzt wird. PHYSIKUS spricht eine große Bandbreite von Nutzern an. So kann das Programm sinnvoll von Schülern und Erwachsenen gleichermaßen im Sinne der Weiterbildung oder auch zum Zweck des Erwerbs von Grundkenntnissen genutzt werden. Der Wissenserwerb kann sowohl in einer Gruppe als auch alleine vollzogen werden. Das Programm sollte jedoch nicht im schulischen Umfeld benutzt werden, da es aufgrund seiner Linearität keinen lehrplanspezifischen Zugriff ermöglicht, sondern einen allgemeinen Überblick über einzelne Teilbereiche der Physik verschafft. Es ist also für den Schüler unterrichtsergänzend einzusetzen, für den Erwachsenen unterrichtssubstituierend, d.h. um sich selbst physikalische Grundkenntnisse beizubringen.
PHYSIKUS ist in den Bereich der Lernspiele einzuordnen, da eine Geschichte im Vordergrund des Erscheinungsbildes steht. An dieser Stelle soll noch einmal auf die strukturierende Funktion einer Geschichte innerhalb eines Lernprogramms hingewiesen werden (vgl. Kap. 2.3.1.2.), jedoch auch auf die Gefahren, wenn der Spielteil, wie bei Physikus zu dominant wird und so erlerntes Wissen dem spielerischen Aspekt untergeordnet wird (vgl. Kap.3.2.2.2.).
Der Benutzer ist während des Spiels keinen Sackgassen ausgeliefert, an denen ein Weiterkommen im Spielverlauf unmöglich wird, da das Programm keine falschen Lösungen zulässt. Das bedeutet jedoch auf der anderen Seite durch die schmale Ausstattung der Diagnosekomponente, dass das Programm autorendeterminiert ist, was sich nicht zuletzt auf die Anzahl der Lösungsvarianten auswirkt. Zu jedem Problem gibt es genau eine Lösung aber mehrere Lösungsmöglichkeiten, wodurch oftmals trial and error zur Problemlösungsmethode wird und nicht, wie man es nach dem Studium eines Lernkapitels erwarten sollte, eine vernünftige Lösung im Vordergrund steht. So ist der Lernende nach den Instruktionen des Lernprogrammes zwar theoretisch in der Lage das Problem zu lösen, doch scheitert die Umsetzung meist am Fehlen eines bestimmten Gegenstands, oder weil das Programm eine bestimmte vom Benutzer logisch durchdachte Lösung nicht vorsieht.
Abschließend sollen die Defizite und Vorteile des Programms auf der Basis der Bewertung der Einzelkomponenten benannt werden:
Defizite |
Auswirkung auf den Lernprozess/den Lerner |
Vorteile |
Auswirkung auf den Lernprozess/den Lerner |
Autorengesteuerter Spielteil |
Langatmige Suche nach der richtigen Lösung kann zur Demotivation des Lerners beitragen |
Interaktionskomponente |
Individualisierung des Lernprozesses |
Fehlen einer individuellen Hilfefunktion im Lernteil |
Der Lerner wird im Problemlösungsprozess allein gelassen |
Links im Spielteil verweisen auf Lernkapitel |
Erinnern den Lerner an ein Studium des Lernteils, der für die Problemlösung relevant ist |
Geringe Ausstattung der Diagnosekomponente |
Es ist keine Lernzielüberprüfung möglich, keine Substituierung von Reiz-Reaktions-Verbindungen bei falschen Antworten |
Verbindung der Drillkomponente mit Animationen |
Durch die duale Form der Informationsaufnahme ist eine eindeutigere Informationsspeicherung möglich |
Schneller Wechsel zwischen Lern- und Spielteil möglich |
Der Benutzer lernt den Sachverhalt für kurze Zeit auswendig, um ihn dann anzuwenden. (mechanisches Lernen) |
Ständiger Zugriff zum Lernteil bzw. Spielteil |
Entdeckende und individualisierte Lernumgebung |
Unterstützung der Instruktion durch einen Sprecher |
Durch den, die Instruktion vorlesenden Sprecher, kann der Benutzer den Fokus auf die Animation richten. |
||
Simulationen |
Fördern entdeckende Lernprozesse (siehe Kap. 2.3.2.2.) |
||
Inhaltsverzeichnis des Lernteils |
Gibt dem Lerner die Möglichkeit, einzelne Gesetze in einem Zusammenhang zu sehen |
||
Design des Interface nach gestaltpsychologischen Gesichtspunkten |
Sich selbst erklärende Handhabung des Programms ® Der Einstieg ist ohne programmtechnisches Vorwissen möglich |
Es ist darauf hinzuweisen, dass alle Folgerungen aus den Defiziten und Vorteilen im zweiten Kapitel der Arbeit ihre lerntheoretische Basis haben.
Es ist deutlich herauszustellen, dass gerade durch das Fehlen der KI-Programmteile Defizite im Bereich der Adaptivität zu sehen sind. Deshalb wird sich der Benutzer an vielen Stellen unverstanden fühlen. So werden z.B. dem Benutzer häufig dieselben Lerneinheiten als Verweise in der Hilfezeile angeboten werden, weil das Programm nicht in der Lage ist zu speichern, welche Lernkapitel der Lernende schon absolviert hat. Auch die unzureichende Diagnosekomponente und die unzureichende Überprüfbarkeit von Lernzielen sprechen gegen eine positive Bewertung des Lernprogramms, dennoch ist es gerade die Gestaltung der Lernumgebung, in die der Lernende geführt wird, die eine hohe Motivation für den Lernprozess erzeugt.
Referate über:
|
Datenschutz |
Copyright ©
2025 - Alle Rechte vorbehalten AZreferate.com |
Verwenden sie diese referate ihre eigene arbeit zu schaffen. Kopieren oder herunterladen nicht einfach diese # Hauptseite # Kontact / Impressum |