Betriebstechnik | Biographien | Biologie | Chemie | Deutsch | Digitaltechnik |
Electronica | Epochen | Fertigungstechnik | Gemeinschaftskunde | Geographie | Geschichte |
Informatik | Kultur | Kunst | Literatur | Management | Mathematik |
Medizin | Nachrichtentechnik | Philosophie | Physik | Politik | Projekt |
Psychologie | Recht | Sonstige | Sport | Technik | Wirtschaftskunde |
Ähnliche Berichte:
|
Projekte:
|
Papers in anderen sprachen:
|
psychologie referate |
Möglichkeiten der Künstlichen Intelligenz
Der Computer war bis dato immer auf einen Input angewiesen, selbst die Lösung eines Problems wurde dem Computer immer vorgegeben, er war immer eine Reproduktionsmaschine, jedoch nie eine Produktionsmaschine, so wie der Mensch. Diese und viele andere Grenzen wurden in dem vorangegangenen Kapitel erläutert, dennoch muss es einige Erfolge auf dem Gebiet der KI gegeben haben, die die mittlerweile schon 40-jährige Tradition rechtfertigen. Das nun folgende Kapitel soll einen Überblick über die Erfolge in der KI-Forschung geben, um im Anschluss daran unter Berücksichtigung der Definitionen kritisch zu analysieren, welche Fähigkeiten KI-Systeme erlangen können und in welchen Bereichen sie den Menschen nie imitieren können werden.
Expertensysteme
Ein Expertensystem ist ein Programm, das mit Hilfe von Wenn-Dann-Regeln in der Lage ist Aussagen über einen bestimmten Sachverhalt zu treffen. Solch eine Form der Datenverarbeitung wird als wissensbasierte Verarbeitung bezeichnet. Expertensysteme sind jedoch nicht mit Datenbanken zu vergleichen, da reine Datenbanken nicht in der Lage sind ihre Daten zu interpretieren. Wissen ist also nichts anderes als interpretierte Daten. Ein wissensbasiertes System soll somit einen menschlichen Experten simulieren. "Im Unterschied zum menschlichen Experten ist das Wissen eines Expertensystems auf eine spezialisierte Informationsbasis beschränkt" (Mainzer, 1997: S.110)
Nach RADERMACHER ist "ein Großteil von dem, was wir tun, nicht mehr als Regelverarbeitung" (Ahrweiler 1995: S.25). Hierzu werden einfache "Wenn-Dann-Regeln" aufgestellt, die das Programm Schritt für Schritt durchläuft. Für RADERMACHER liegt der größte Beitrag der KI in den Inferenzsystemen, die geschrieben wurden, um "die Verwaltung und Abarbeitung großer Regelmengen zu erleichtern" (Ahrweiler 1995: S.25). Schon an dieser Stelle wird deutlich, dass es, wenn auch in einem begrenzten Rahmen, möglich ist, menschliche Denkvorgänge auf eine Maschine zu übertragen.
Nachdem im Expertensystembereich sehr unterschiedliche Definitionen von Expertensystemen im Umlauf sind, erscheint es sinnvoll die differenzierende Definition aus COY und BONSIEPEN zu übernehmen. Diese Definition trennt zwei unabhängige Aspekte, die für den Begriff Expertensystem wichtig sind, in zwei verschiedene Definitionen:
Anwendungsorientierte Definition:
Ein Expertensystem ist ein Computerprogramm, das für ein spezifisches und genau abgegrenztes Teilgebiet gewisse Aufgaben eines Experten lösen kann bzw. ihn bei der Problemlösung unterstützt. Dazu wird das spezielle Wissen des Experten explizit in symbolischer Form in einem Programm oder als Datenmenge bzw. innerhalb einer Datenbank dargestellt.
Technische Definition:
Expertensysteme sind Programme, die sich durch die Trennung der anwendungsspezifischen Methoden in der Wissensbank und der anwendungsunabhängigen Programmsteuerung durch die Inferenzmaschine zum Erzeugen logischer Schlussfolgerungen auszeichnet.
Es ergeben sich natürlich auch zwei Fälle, wo diese beiden Definitionen nicht zusammenfallen. Zum einen kann ein System Aufgaben eines Experten übernehmen und doch auf traditionelle Art programmiert sein, zum Beispiel aus Effizienzgründen. Zum anderen kann es vorkommen, dass ein System in der Art der Expertensysteme programmiert ist, dass es jedoch für Aufgaben verwendet wird, für die bisher kein Experte eingesetzt wurde, wie z.B. in der Prozessteuerung oder in der Mustererkennung.
Funktionsweise von Expertensystemen
Typisch für die Funktionsweise von Expertensystemen ist auf der einen Seite das Aufstellen sehr komplizierter Wenn-Dann-Regeln und auf der anderen Seite das Berechnen von Wahrscheinlichkeiten. Dadurch, dass es dynamische Regelsysteme sind, werden am Ende der Problemlösungssequenz mehrere richtige Lösungen benannt, die mit unterschiedlichen Wahrscheinlichkeiten belegt sind. Ahnlich einer quadratischen Gleichung, die immer zwei Lösungen hervorbringt, wäre in diesem Fall die Wahrscheinlichkeit der richtigen Lösung mit 1:1 zu bestimmen. (vgl. Puppe, 1988)
Expertensysteme sind Programmstrukturen, die aus mehreren Teilen bestehen. Grundsätzlich kann man Expertensysteme in zwei "Hauptmodule" einteilen (siehe Abb.1). Zum einen das Steuersystem und zum anderen die Wissensbasis. Zuerst soll das Steuersystem näher erläutert werden, um schließlich den Aufbau der Wissensbasis aufzuzeigen.
Das Steuersystem eines Expertensystems kann die Lösungsstrategie eines Experten simulieren. Die Regeln werden zu einer Konstanten, die auf unterschiedliche Wissensgebiete angewendet werden kann. Sie ist unabhängig von der Wissensbasis. Nach PUPPE besteht das Steuersystem aus 4 Komponenten (siehe Abb.1).
Die Problemlösungskomponente ist der Vermittler zwischen der Wissensbasis und dem Steuersystem. Hier wird "das Expertenwissen zur Lösung des vom Benutzer spezifizierten Problems interpretiert." (Puppe, 1988: S.12)
Die Interviewerkomponente liest die variablen Daten ein, bzw. die Aufgabenstellung von Seiten des Benutzers.
"Die Erklärungskomponente erläutert dem Anwender die ermittelte Lösungsstrategie." (Nebendahl, 1987: S. 33) So kann der Anwender Fehler in der Wissensbasis lokalisieren oder auch nur den Lösungsweg ablesen. In jedem Fall wird die Arbeit des Expertensystems transparent gemacht.
Die Wissenserwerbskomponente ist der Ort im Programm, in den der Experte sein Wissen eingeben kann.
Sind nur Wissenserwerbskomponente, Interviewerkomponente, Erklärungskomponente und Problemlösungskomponente vorhanden, spricht man von einer (Expertensystem-) Shell. Die Anwender können hier das Wissensgebiet selbst festlegen, indem sie die Wissensbank mit dem nötigen Wissen auffüllen.
"Die Wissensbasis eines Expertensystems enthält das Faktenwissen und Erfahrungswissen von Experten eines Aufgabengebietes." (Nebendahl, 1987: S. 33)
Die Wissensbasis besteht aus drei verschiedenen Teilen (siehe Abb.1):
Dem fallspezifischen Wissen von den jeweiligen Benutzern,
den Zwischenergebnissen und Problemlösungen, die von der Problemlösungskomponente hergeleitet wurden und
dem bereichsbezogenen Expertenwissen. (Puppe, 1988: S.12)
Während die Wissensbasis also dem Input entspricht, ist das Steuersystem das Herz des Expertensystems. Hier wird das Input so verarbeitet, wie die Regeln es vorschreiben. Erst das Steuersystem macht aus einem Expertensystem eine intelligente Maschine. Der Hauptvorteil der Trennung des Systems in Inferenzkomponente und Wissensbank ist der einer leichten Wartung und Anderbarkeit, da diese Systeme typischerweise eben in Gebieten mit sich änderndem Wissen eingesetzt werden.
Beim Erstellen eines Expertensystems vier Teilgebiete zu beachten: (vgl.Puppe, 1988: S.113ff.)
a) Wissenserwerb
b) Wissensrepräsentation
c) Inferenzmechanismus
d) Benutzerschnittstelle
zu a) Wissenserwerb
Der Wissenserwerb (vgl. Puppe, 1988: S.115ff.) ist der Versuch, das Wissen eines Experten in einer implementationsunabhängigen aber formalen Weise niederzulegen. Dies kann auf verschiedene Weise geschehen:
Indirekt:
Dazu muss der Wissensingenieur dem menschlichen Experten helfen, sein relevantes fachliches Wissen zu identifizieren, zu strukturieren und zu formalisieren. Andere Wissensquellen neben dem Experten können für den Wissensingenieur eigenes Fachwissen sowie Fallstudien oder Bücher sein.
Direkt:
"Der Experte formalisiert sein Wissen selbst." (Puppe, 1988: S.114) Dazu muss das Expertensystem eine leicht bedienbare Wissenserwerbskomponente haben.
Automatisch:
"Das Expertensystem extrahiert sein Wissen selbständig aus Falldaten oder verfügbarer Literatur." (Puppe, 1988: S.114) Diese Technik ist allerdings im Moment reiner Forschungsgegenstand.
Zum Wissen eines Experten können ganz verschiedene Dinge gehören, wie zum Beispiel Fakten, Überzeugungen, Methoden, Heuristiken und nicht zuletzt Problemlösungswissen (globale Strategien, Metawissen). Ein Phasenplan zum Wissenserwerb sieht folgendermaßen aus:
Zuerst wird ein Pflichtenheft mit organisatorischer Umgebung und Anforderungen an das Expertensystem erstellt. Anschließend wird der Grobentwurf und der zu betrachtende Realitätsausschnitt festgelegt. Danach wird das Wissen in einer, dem verwendeten Rechnersystem und der zur Anwendung kommenden Shell verständlichen Form aufbereitet. Die hierbei zustandekommenden Strukturen dienen dann der Formulierung von Regeln, die in einem letzten Teil des Phasenplans getestet werden. (nach Buchanan, 83: S.139)
b) Wissensrepräsentation
Die Wissensrepräsentation hat eine natürliche und effiziente Darstellung des "Wissens" zum Ziel. Unabhängig von der nicht ganz klaren Bedeutung von natürlich in diesem Zusammenhang ist klar, dass diese Bedingungen eventuell in Konflikt miteinander treten können. Hierzu sind Kalküle entwickelt worden, die den regelhaften Ablauf des Systems steuern.
Ein Kalkül beschreibt, wie man aus Aussagen mit Hilfe von Ableitungsregeln neue Aussagen erhält. Vorgegebene Aussagen sind die Axiome (Fakten, Annahmen, das was nicht in Frage gestellt wird). Abgeleitete Aussagen sind Theoreme (Schlussfolgerung). PUPPE benennt sechs unterschiedliche Eigenschaften von Kalkülen:
Adäquatheit: Natürlichkeit der Beschreibung der Welt
Effizienz: Relevanz der Schlussfolgerungen für die Welt
Mächtigkeit: Repräsentierbarkeit von Aussagen über die Welt
Entscheidbarkeit: Ein Kalkül verfügt dann über die Eigenschaft der Entscheidbarkeit, "wenn für eine beliebige Aussage entschieden werden kann, ob sie aus den Axiomen folgt oder nicht." (Puppe, 1988: S.18)
Vollständigkeit: "Ein Kalkül ist dann vollständig, wenn alle Schlussfolgerungen, die semantisch (zur Welt gehörig) gelten, auch syntaktisch (im Kalkül befindlich) herleitbar sind." (Puppe, 1988: S.18)
Konsistenz: Die Aussagen dürfen sich nicht widersprechen.
c) Ein Inferenzmechanismus
Ein Inferenzmechanismus ist repräsentationsabhängig. Dabei heißt Inferenz allgemein, dass aus vorhandenem Wissen Neues erschlossen wird. Nebenbei angemerkt können die Schlussverfahren bzw. das Wissen auch vage und unsicher sein.
In diesem Zusammenhang ist es wichtig, den Begriff "Regel" kurz zu erläutern. "Da Experten ihr Wissen oft in Form von Regeln formulieren, sind Regeln die verbreitetste Wissensrepräsentation in Expertensystemen." (Puppe, 1988: S. 21) "Eine Regel besteht aus einer Vorbedingung und einer Aktion." (Puppe, 1988: S. 21) PUPPE benennt zwei Arten der Aktionen. Zum einen die Implikation/Deduktion, und zum anderen Handlungen. Erstere prüfen den "Wahrheitsgehalt einer Feststellung" (Puppe, 1988: S. 21), während die Handlungen einen Zustand verändern können.
Zur Abarbeitung der Regelmengen stellt sich die Frage, ob die Regeln vorwärts- oder rückwärtsverkettet bearbeitet werden (siehe Abb.2). Eine Vorwärtsverkettung kann Schlussfolgerungen nur mit einer vorgegebenen Datenbasis ermöglichen. Hierbei werden zuerst alle Schlüsse errechnet, die sich aus der Wissensbank zusammen mit den fallspezifischen Fakten ergeben. Bei der Vorwärtsverkettung gibt es zwei verschiedene Phasen, um die relevanten Regeln zu finden. Zuerst sucht das System während einer Vorauswahl innerhalb der gesamten Datenbasis. In einer zweiten spezifischeren Auswahl können dann mit Hilfe von verschiedenen formalisierten Konfliktlösungsstrategien Regeln gefunden werden, die das gestellte Problem lösen können. (siehe Abb.2)
Bei der Rückwärtsverkettung geht man von einer Endhypothese aus und versucht Regeln zu finden, die diese Hypothese aus den bekannten Regeln herleiten. Hierbei ist der Prozess der Problemlösung dialogisch. Nach der Zielformulierung des Benutzers überprüft das System die Datenbasis nach relevanten Regeln, wenn das Problem lösbar ist, werden mit ähnlichen Konfliktlösungsstrategien Regeln gefunden, wie bei der Vorwärtsverkettung. Ist das Problem mit der vorgegebenen Datenbasis nicht zu lösen, wird ein Unterziel formuliert und das System braucht einen erneuten Input durch den Benutzer. Diese Schleife vollzieht sich solange, bis dem System alle Daten zur Verfügung stehen, um zu einer Schlußfolgerung zu kommen. (siehe Abb.2)
Die Vorwärtsverkettung ist vorteilhaft, wenn alle Daten von Anfang an vorhanden sind (z.B. Konstruktion) bzw. wenn auf neu ankommende Daten reagiert werden muss (z.B. Prozessüberwachung).
Die Rückwärtsverkettung hat Vorteile, wenn nur eine kleine Zahl von Endhypothesen vorhanden ist wie z.B. bei manchen Diagnose- und Klassifikationsaufgaben. Diese Methoden können bei Bedarf auch kombiniert werden. (vgl. Puppe, 1988: S.21ff.)
d) Die Benutzerschnittstelle
Die Benutzerschnittstelle muss mit zwei Anwendersichten konstruiert werden: Zum einen die Sicht für den Experten bzw. Wissensingenieur beim Aufbau und der Wartung der Wissensbank, zum anderen die Sicht des Nutzers in der Anwendung des Systems.
Bei Expertenschnittstellen (siehe Abb.1) sind zum Beispiel für die Eingabe von Wissen Regeleditoren üblich, oder die Implementation von formalen Sprachen zur Beschreibung von Regeln und Fakten. Als Forschungsgegenstand gibt es Versuche natürlichsprachlich - z.B. aus Texten - Wissen in das System zu übertragen. Ein anderer Forschungsgegenstand sind sogenannte lernende Systeme, die zumeist Regeln aus Beispielen selbständig extrahieren können sollen.
Ein wichtiger Aspekt des Wissenserwerbs ist die Sinnfälligkeitsprüfung, da neues Wissen mit dem alten in Widerspruch treten kann und immer wieder Seiteneffekte zum Beispiel durch neue, geänderte oder entfernte Regeln auftreten können. Es gibt noch wenig Methoden, die diese Problematik wirklich lösen können.
Die Schnittstelle Benutzersystem (siehe Abb.1) ist eine Dialogkomponente zur Problemformulierung für Rückfragen des Systems, für Fragen des Benutzers über den Lösungsweg und schließlich zur Ergebnisausgabe.
Angestrebt wird dabei von vielen KI-Forschern die möglichst durchgängige Verwendung von natürlicher Sprache. Beim jetzigen Stand der Technik ist dies jedoch reiner Forschungsgegenstand.
Die Ergebnisdarstellung kann dabei auch grafisch sein. Wichtig ist in einigen Fällen eventuell die Unterdrückung von Details, also eine Art Ergebnisabstraktion.
Die Erklärungskomponente liefert als Antwort zumeist eine Art Protokoll der Inferenzschritte. Dieses Protokoll wird oft noch aus Gründen der Verständlichkeit weiter aufbereitet, da das einfache Mitschreiben der Inferenzschritte für den Benutzer nicht oder nur sehr schwer verständlich ist. Diese Komponente sollte optimalerweise immer zugänglich sein. (siehe Abb.1)
Man kann der Erklärungskomponente zumeist zwei Typen von Fragen stellen: Wie-Fragen (Wie kommt es zu diesem abgeleiteten Faktum?) und Warum-Fragen (Warum wird diese Zwischenfrage gestellt?). (vgl. Puppe 1988: S.132ff.)
Anwendung von Expertensystemen
Expertensysteme sollen dort eingesetzt werden, wo man auf regelgeleitete, komplexe Systeme stößt, die von Menschen unwirtschaftlich und oft fehlerhaft bewältigt werden. Im Umgang mit Expertensystemen sind drei Personenrollen vorgesehen: Benutzer, Experte und Wissensingenieur. Verschiedene Rollen können aber auch in einer Person zusammenfallen. Zum Beispiel wenn der Experte selbst sein Wissen formalisiert und in das System eingibt.
Expertensysteme können für viele verschiedene Bereiche erstellt werden. Sie sind aber vor allem gute Problemlöser für wohldefinierte Aufgabengebiete. Folgende spezifische Kategorien haben sich herausgebildet (vgl. Busch/u.a., 1994: 134ff.; Savory, 1985; Herzog/u.a., 1993: S.125ff.; Häuslein, 1993: S.61ff.):
Analyse- und Interpretationssysteme:
Große Informationsmengen werden geordnet, analysiert, reduziert und nach Bedarf aufbereitet.
Beispiel: WWW Search Engines, Recherchen in Online-Datenbanken,
Simulationssysteme:
Simulationen sind modellhafte Abbildungen eines realen Phänomens (vgl. Kap. 2.3.2.2.) HAUSLEIN definiert ein Simulationssystem folgendermaßen: "Ein Simulationssystem ist ein Softwaresystem, das die rechnergestütze Bearbeitung der drei Aufgabenbereiche Modellbildung, Durchführung von Simulationsexperimenten und Ergebnisanalyse im Rahmen einer Simulationsstudie unterstützt." (Häuslein, 1993: S.68)
Beispiel: Jäger-Beute-Simulationen in der Biologie, Simulationssysteme im Umweltbereich z.B. zur Erstellung eines Wetterberichtes
Diagnose- und Fehlersuchsysteme:
Daten über Zustand und Verhalten des zu diagnostizierenden Objekts werden vom System erfragt. Auf dieser Informationsbasis zieht das System Schlüsse über eine etwaige Fehlfunktion. Diese Art von wissensbasierten Systemen werden häufig auch von Experten selbst genutzt. (vgl. Busch/ u.a., 1994: S.134ff.)
Beispiel: medizinische Diagnose, Risikoprüfung in der privaten Krankenversicherung
Beobachtungs- und Kontrollsysteme:
Das Expertensystem dient als Feedback-Mechanismus, der die über Sensoren erhaltenen Informationen auswertet und danach Prozesse mit Kontrollsignalen steuert.
Beispiel: Steuerung und Überwachung von chemischen Prozessen
Designsysteme:
Das Expertensystem erhält Spezifikationen von Produkten oder Bauteilen. Es konstruiert selbständig und zeichnet unter Zuhilfenahme von CAD-Software.
Beispiel: Schaltungsentwurf und -zeichnung
Wirtschaftswissenschaftliche Systeme
Viele wirtschaftswissenschaftlichen Abläufe lassen sich in Regeln formulieren. HERZOG vermutet aus diesem Grund, "dass innerhalb der Informationsbearbeitung die wissensbasierten Techniken einen interessanten Beitrag zur Kundenbedienung leisten können." (Herzog/u.a., 1993: S.127)
Beispiel: Berechnung des Beitrags für Autoversicherungen, Erstellung von Personalplänen
Tutorielle Systeme:
Das Expertensystem dient als Lehrer, der sich mit einer bestimmten Wissensdomäne vertraut macht.
Beispiel: SOPHIE lehrt Technikern die Fehlersuche in elektronischen Schaltungen
Bewertung der KI in Bezug auf die Implementierung in ein Lernprogramm
Wie gezeigt wurde, sind Programme, die mit künstlicher Intelligenz ausgestattet sind, in der Lage, alle die Tätigkeiten des Menschen zu imitieren, die auf Regeln basieren. Sie sind jedoch nicht in der Lage, wie auch SEARLE schon feststellte, zu verstehen. Er geht dabei auf das Imitationsspiel von Turing ein. Seiner Meinung nach wird es in Zukunft mit Sicherheit Maschinen geben, die in der Lage sein werden Denkaufgaben und Vorgänge in der Weise zu erledigen, wie sie heute unser Gehirn erledigt. Computer zählen für ihn aber nicht zu diesen Maschinen. Um seine These zu stützen, bringt er das Beispiel mit dem chinesischen Zimmer. Hierbei gibt es einen Menschen, dessen Muttersprache Englisch ist. Dieser sitzt in einem geschlossenen Raum. Vor einem Fenster außerhalb des Raums stehen Personen deren Muttersprache chinesisch ist. Der Mensch in dem Raum erhält nun mehrere Symbole, die die Außenstehenden als chinesische Schriftzeichen identifizieren würden. Als Nächstes erhält die Person im Zimmer eine Anleitung auf Englisch, seiner Muttersprache, wie er die Symbole zu kombinieren hat. Außerhalb des Raumes erkennen die Personen Sätze, bzw. Aussagen. Und als Letztes erhält die Person im Raum noch eine Anleitung in seiner Muttersprache Englisch, wann er welche Schriftzeichenkombinationen zu verwenden hat. Die Personen außerhalb spielen mit der Person im Raum nun das Imitationsspiel. Aufgrund der Anleitungen, wann welche Symbole zu verwenden sind, ist die Person im Raum nun in der Lage das Imitationsspiel problemlos zu meistern. Stellt man jedoch die Frage, ob er etwas verstanden hat, von dem was er mit den Symbolen zum Ausdruck brachte, antwortet dieser mit nein. Er hat lediglich die Anweisungen in der Sprache verfolgt, die er seine Muttersprache nennt. Für die Außenstehenden ist diese Tatsache nicht erkennbar. Für sie hat er zu jeder Frage die passende Antwort gegeben. SEARLE vergleicht nun die Person im Raum mit einem Computer (der Hardware) und die Anweisungen mit dem Programm (der Software). So steht für ihn fest, dass Computer, wie wir sie heute kennen, nicht in der Lage sind zu verstehen. Diese Ansicht wird auch starke KI genannt. Den Aussagen der schwachen KI, Computer wären in der Lage gewisse Denkprozesse zu simulieren, stimmt SEARLE jedoch zu, womit wir bei den Möglichkeiten von KI angelangt sind.
Nach der Recherche der unterschiedlichen Definitionen von Intelligenz, ist aufgefallen, dass Denkprozesse oft dann als intelligent bezeichnet wurden, wenn sie so komplex sind, dass die Kognitions-Forscher sie nicht mehr erklären können (Bewusstsein, Intention). Sobald jedoch ein neues Erklärungsmodell gefunden wird, lüftet sich der Zauber der Intelligenz und es bleibt eine nackte Theorie zurück, nach der man den erklärten Denkprozess nicht mehr als intelligent bezeichnen würde. Ist man jedoch erst in der Lage, das erkannte Phänomen in einer Maschine nachzubauen, bleibt nichts weiter zurück als ein Formalismus. Es wird folglich immer schwerfallen, eine Maschine als intelligent zu bezeichnen, weil sie immer den Menschen abbilden wird. (vgl. Schanda, 1995: S.62) Eine Maschine, die dem menschlichen Gehirn nachempfunden ist, wird es erst dann geben, wenn man die Arbeit des Gehirns vollständig erforscht hat. Deshalb behelfen sich die Forschungsbereiche psychologische Kognition, Neurophysiologie und KI gegenseitig (Bibel/u.a., 1987: S.1ff.), um auf der einen Seite das Geheimnis der Intelligenz zu lüften und auf der anderen Seite "intelligente" Maschinen zu bauen.
Wenn man die KI in ein Lernprogramm implementieren will, wird man also auf die erfolgreichen Versuche der KI-Forschung zurückgreifen müssen, auf die Expertensysteme. Die Frage, die sich stellt, ist, ob Expertensysteme so zu konstruieren sind, dass sie menschliches Lernen unterstützen können. Dazu müsste sich das System dem Lerntypus, dem Lernniveau und dem Vorwissen des Lernenden anpassen können. Wie oben schon erwähnt, sind zumindest die rückwärtsverketteten Regelsysteme in der Lage, einen Dialog mit dem Benutzer auszuführen, und können die neu gewonnenen Erkenntnisse in die Regelbasis integrieren. PUPPE schreibt dazu: "Da das Wissen in guten Expertensystemen strukturiert aufbereitet ist und auch viele praktisch nützliche Heuristiken enthält, ist der Einsatz für tutorielle Zwecke naheliegend. Dabei kommen jedoch neue Anforderungen auf das Expertensystem zu." (Puppe, 1988: S.137) Die neuen Anforderungen, die PUPPE benennt, sollen in einem kurzen Abriss wiedergeben werden (Puppe, 1988: S.137ff.):
Es sollte eine Ahnlichkeit in der Problemlösungsstrategie zwischen Lernendem und dem Expertensystem bestehen, damit die Aussagen der Erklärungskomponente den Benutzer nicht verwirren, sondern den Fehler des Lernenden aufgreifen und erklären können.
Die Wissensbasis muss für den Benutzer individuell zu erarbeiten sein (Hypertext).
Die Problemlösung sollte vom Benutzer ausgehen, während das System zwar parallel das Problem verarbeitet, um dann jedoch dem Lernenden ein Feedback geben zu können. Das heißt, das System muss über eine Vergleichskomponente verfügen, mit dessen Hilfe die Problemlösung des Benutzers mit der des Expertensystems abgeglichen werden kann.
Damit mehrere Personen das System benutzten können, sollte das Programm in der Lage sein, benutzerspezifische Daten abzuspeichern, da der Lernprozess ein individueller Ablauf ist, an dessen Ende zwar meist ein ähnliches Ergebnis steht, dessen Verlauf jedoch sehr unterschiedlich ist.
Solche Lernprogramme wurden unter dem Namen IT-Systeme (intelligente tutorielle Systeme) entwickelt. Welche Eigenschaften ein solches Lernprogramm hat, wird im nächsten Kapitel beschrieben. Hier soll die Eigenart der menschlichen Lernprozesse dargestellt werden, und die sich daraus ergebenden Konsequenzen für die Modellierung eines Lernprogramms auf lerntheoretischer Basis.
Referate über:
|
Datenschutz |
Copyright ©
2024 - Alle Rechte vorbehalten AZreferate.com |
Verwenden sie diese referate ihre eigene arbeit zu schaffen. Kopieren oder herunterladen nicht einfach diese # Hauptseite # Kontact / Impressum |